Properties

Label 11520.ec.2880.b1
Order $ 2^{2} $
Index $ 2^{6} \cdot 3^{2} \cdot 5 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^2$
Order: \(4\)\(\medspace = 2^{2} \)
Index: \(2880\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 5 \)
Exponent: \(2\)
Generators: $\langle(10,11)(14,15), (14,15)\rangle$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is normal, a semidirect factor, abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.

Ambient group ($G$) information

Description: $C_2^5:C_6\times A_5$
Order: \(11520\)\(\medspace = 2^{8} \cdot 3^{2} \cdot 5 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian and nonsolvable.

Quotient group ($Q$) structure

Description: $C_2^4:\GL(2,4)$
Order: \(2880\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 5 \)
Exponent: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Automorphism Group: $S_3\times S_4\times S_5$, of order \(17280\)\(\medspace = 2^{7} \cdot 3^{3} \cdot 5 \)
Outer Automorphisms: $C_2\times D_6$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)
Nilpotency class: $-1$
Derived length: $2$

The quotient is nonabelian, an A-group, and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$S_5\times C_2\wr C_2^2\times S_4$
$\operatorname{Aut}(H)$ $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_2^5:\GL(2,4)$
Normalizer:$C_2^5:C_6\times A_5$
Complements:$C_2^4:\GL(2,4)$
Minimal over-subgroups:$C_2\times C_{10}$$C_2\times C_6$$C_2\times C_6$$C_2\times C_6$$C_2^3$$D_4$$C_2^3$$C_2^3$$D_4$$C_2^3$$C_2^3$$D_4$$C_2^3$$C_2^3$$D_4$
Maximal under-subgroups:$C_2$$C_2$

Other information

Number of subgroups in this autjugacy class$4$
Number of conjugacy classes in this autjugacy class$4$
Möbius function not computed
Projective image$C_2^5:\GL(2,4)$