Properties

Label 11520.ec.24.k1
Order $ 2^{5} \cdot 3 \cdot 5 $
Index $ 2^{3} \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^3:C_{60}$
Order: \(480\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \)
Index: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Generators: $\langle(10,14,11,15), (8,9), (6,8,13)(7,9,12), (10,11)(14,15), (1,4,5,3,2)(6,13,8,7,12,9)(10,15,11,14), (6,7)(8,9), (8,9)(12,13)\rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, monomial (hence solvable), metabelian, and an A-group.

Ambient group ($G$) information

Description: $C_2^5:C_6\times A_5$
Order: \(11520\)\(\medspace = 2^{8} \cdot 3^{2} \cdot 5 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$S_5\times C_2\wr C_2^2\times S_4$
$\operatorname{Aut}(H)$ $C_4\times D_4\times S_4$, of order \(768\)\(\medspace = 2^{8} \cdot 3 \)
$W$$C_2^2\times A_4$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)

Related subgroups

Centralizer:$C_2\times C_{20}$
Normalizer:$D_4\times A_4\times D_{10}$
Normal closure:$C_2^3:C_{12}\times A_5$
Core:$C_2^3:C_{12}$
Minimal over-subgroups:$C_2^5:C_{30}$$C_4\times A_4\times D_{10}$$C_2\times A_4\times D_{20}$
Maximal under-subgroups:$C_2^3:C_{30}$$A_4\times C_{20}$$C_2^3\times C_{20}$$C_2\times C_{60}$$C_2^3:C_{12}$

Other information

Number of subgroups in this autjugacy class$6$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_2^4:\GL(2,4)$