Properties

Label 11520.ec.12.b1
Order $ 2^{6} \cdot 3 \cdot 5 $
Index $ 2^{2} \cdot 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^4\times A_5$
Order: \(960\)\(\medspace = 2^{6} \cdot 3 \cdot 5 \)
Index: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Exponent: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Generators: $\langle(1,2)(3,4)(12,13), (8,9), (1,5,3)(6,7), (10,11)(14,15), (6,7)(8,9), (8,9)(12,13)\rangle$ Copy content Toggle raw display
Derived length: $1$

The subgroup is the socle (hence characteristic and normal), nonabelian, an A-group, and nonsolvable.

Ambient group ($G$) information

Description: $C_2^5:C_6\times A_5$
Order: \(11520\)\(\medspace = 2^{8} \cdot 3^{2} \cdot 5 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian and nonsolvable.

Quotient group ($Q$) structure

Description: $C_2\times C_6$
Order: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Automorphism Group: $D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)
Outer Automorphisms: $D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 2$ (hence hyperelementary), and metacyclic.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$S_5\times C_2\wr C_2^2\times S_4$
$\operatorname{Aut}(H)$ $S_5\times A_8$, of order \(2419200\)\(\medspace = 2^{9} \cdot 3^{3} \cdot 5^{2} \cdot 7 \)
$W$$\GL(2,4)$, of order \(180\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5 \)

Related subgroups

Centralizer:$D_4\times C_2^3$
Normalizer:$C_2^5:C_6\times A_5$
Minimal over-subgroups:$C_2^4:\GL(2,4)$$C_2^5\times A_5$$C_4\times C_2^3\times A_5$
Maximal under-subgroups:$C_2^3\times A_5$$C_2^3\times A_5$$C_2^3\times A_5$$C_2^3\times A_5$$C_2^3\times A_5$$A_4\times C_2^4$$C_2^3\times D_{10}$$C_2^3\times D_6$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_2^4:\GL(2,4)$