Properties

Label 11520.da.8.g1
Order $ 2^{5} \cdot 3^{2} \cdot 5 $
Index $ 2^{3} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{12}:S_5$
Order: \(1440\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 5 \)
Index: \(8\)\(\medspace = 2^{3} \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Generators: $\langle(6,9,8)(10,13,12,11), (10,12)(11,13), (1,2)(6,9,8)(10,13)(11,12), (1,5,4)(2,3)(10,13)(11,12), (6,9,8)\rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian and nonsolvable.

Ambient group ($G$) information

Description: $D_4\times A_4\times S_5$
Order: \(11520\)\(\medspace = 2^{8} \cdot 3^{2} \cdot 5 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(S_5\times \GL(2,\mathbb{Z}/4)).C_2^2$, of order \(46080\)\(\medspace = 2^{10} \cdot 3^{2} \cdot 5 \)
$\operatorname{Aut}(H)$ $C_2\times D_4\times S_5$, of order \(1920\)\(\medspace = 2^{7} \cdot 3 \cdot 5 \)
$W$$C_2^2\times S_5$, of order \(480\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \)

Related subgroups

Centralizer:$C_6$
Normalizer:$C_3\times D_4\times S_5$
Normal closure:$A_4\times C_4:S_5$
Core:$C_4:S_5$
Minimal over-subgroups:$A_4\times C_4:S_5$$C_3\times D_4\times S_5$
Maximal under-subgroups:$C_6\times S_5$$C_{12}\times A_5$$C_4:S_5$$C_{12}:S_4$$C_{20}:C_{12}$$C_{12}:D_6$

Other information

Number of subgroups in this autjugacy class$4$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_2^2\times A_4\times S_5$