Properties

Label 11520.da.12.f1
Order $ 2^{6} \cdot 3 \cdot 5 $
Index $ 2^{2} \cdot 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^3.S_5$
Order: \(960\)\(\medspace = 2^{6} \cdot 3 \cdot 5 \)
Index: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Generators: $\langle(6,8)(7,9), (1,2)(10,13,12,11), (10,12)(11,13), (6,9)(7,8)(10,12)(11,13), (1,5,4)(2,3)(6,9)(7,8)(10,11,12,13)\rangle$ Copy content Toggle raw display
Derived length: $1$

The subgroup is characteristic (hence normal), a semidirect factor, nonabelian, and nonsolvable.

Ambient group ($G$) information

Description: $D_4\times A_4\times S_5$
Order: \(11520\)\(\medspace = 2^{8} \cdot 3^{2} \cdot 5 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian and nonsolvable.

Quotient group ($Q$) structure

Description: $C_2\times C_6$
Order: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Automorphism Group: $D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)
Outer Automorphisms: $D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 2$ (hence hyperelementary), and metacyclic.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$(S_5\times \GL(2,\mathbb{Z}/4)).C_2^2$, of order \(46080\)\(\medspace = 2^{10} \cdot 3^{2} \cdot 5 \)
$\operatorname{Aut}(H)$ $C_2^3:S_4\times S_5$, of order \(23040\)\(\medspace = 2^{9} \cdot 3^{2} \cdot 5 \)
$W$$C_6\times S_5$, of order \(720\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 5 \)

Related subgroups

Centralizer:$C_2^2\times C_4$
Normalizer:$D_4\times A_4\times S_5$
Complements:$C_2\times C_6$ $C_2\times C_6$ $C_2\times C_6$
Minimal over-subgroups:$A_4\times A_5:C_4$$C_2^4:S_5$$C_4\times C_2^2\times S_5$
Maximal under-subgroups:$C_2^3\times A_5$$C_2^2.S_5$$C_2^2.S_5$$C_2^3.S_4$$C_2^3\times F_5$$C_{12}:C_2^3$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_2^2\times A_4\times S_5$