Properties

Label 1152.99269.8.d1
Order $ 2^{4} \cdot 3^{2} $
Index $ 2^{3} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_6:D_{12}$
Order: \(144\)\(\medspace = 2^{4} \cdot 3^{2} \)
Index: \(8\)\(\medspace = 2^{3} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\langle(3,5)(7,8)(11,13)(12,14), (1,5,2,3)(4,7,6,8), (1,4)(2,6)(3,8)(5,7), (9,11,13)(10,14,12), (1,2)(3,5)(4,6)(7,8), (10,14,12)\rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is normal, a semidirect factor, nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Ambient group ($G$) information

Description: $C_2^3.D_6^2$
Order: \(1152\)\(\medspace = 2^{7} \cdot 3^{2} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), metabelian, and rational.

Quotient group ($Q$) structure

Description: $D_4$
Order: \(8\)\(\medspace = 2^{3} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Automorphism Group: $D_4$, of order \(8\)\(\medspace = 2^{3} \)
Outer Automorphisms: $C_2$, of order \(2\)
Derived length: $2$

The quotient is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), metacyclic (hence metabelian), and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_6^2.(C_2^4\times A_4).C_2^3$
$\operatorname{Aut}(H)$ $C_2\times \SL(2,3).C_2^6$, of order \(27648\)\(\medspace = 2^{10} \cdot 3^{3} \)
$\card{W}$\(288\)\(\medspace = 2^{5} \cdot 3^{2} \)

Related subgroups

Centralizer:$C_2^2$
Normalizer:$C_2^3.D_6^2$
Complements:$D_4$ $D_4$
Minimal over-subgroups:$C_6^2:C_2^3$$C_6^2.C_2^3$$D_6:D_{12}$
Maximal under-subgroups:$C_6:D_6$$C_6:D_6$$C_6\times C_{12}$$C_3:D_{12}$$C_2\times D_{12}$$C_2\times D_{12}$

Other information

Number of subgroups in this autjugacy class$3$
Number of conjugacy classes in this autjugacy class$3$
Möbius function not computed
Projective image not computed