Properties

Label 1152.156581.12.b1
Order $ 2^{5} \cdot 3 $
Index $ 2^{2} \cdot 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^2\times S_4$
Order: \(96\)\(\medspace = 2^{5} \cdot 3 \)
Index: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $a, e, d^{3}e, b^{2}, c^{6}, c^{4}d^{4}$ Copy content Toggle raw display
Derived length: $3$

The subgroup is characteristic (hence normal), nonabelian, monomial (hence solvable), and rational.

Ambient group ($G$) information

Description: $C_4\times C_{12}\times S_4$
Order: \(1152\)\(\medspace = 2^{7} \cdot 3^{2} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Quotient group ($Q$) structure

Description: $C_2\times C_6$
Order: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Automorphism Group: $D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)
Outer Automorphisms: $D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 2$ (hence hyperelementary), and metacyclic.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2\times S_4\times C_2^4:C_3.D_4$
$\operatorname{Aut}(H)$ $S_4^2$, of order \(576\)\(\medspace = 2^{6} \cdot 3^{2} \)
$\card{W}$\(24\)\(\medspace = 2^{3} \cdot 3 \)

Related subgroups

Centralizer:$C_4\times C_{12}$
Normalizer:$C_4\times C_{12}\times S_4$
Minimal over-subgroups:$C_2\times C_6\times S_4$$C_2^4.D_6$
Maximal under-subgroups:$C_2\times S_4$$C_2^2\times A_4$$C_2^2\times D_4$$C_2\times D_6$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image not computed