Properties

Label 1152.156064.6.j1.a1
Order $ 2^{6} \cdot 3 $
Index $ 2 \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$D_6:\SD_{16}$
Order: \(192\)\(\medspace = 2^{6} \cdot 3 \)
Index: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Generators: $a, b^{4}, de^{3}, be^{3}, e^{2}, c^{3}e^{3}, b^{2}de^{3}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Ambient group ($G$) information

Description: $D_6.\GL(2,\mathbb{Z}/4)$
Order: \(1152\)\(\medspace = 2^{7} \cdot 3^{2} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^5.D_6^2$, of order \(4608\)\(\medspace = 2^{9} \cdot 3^{2} \)
$\operatorname{Aut}(H)$ $C_2^5\times S_3\times D_4$, of order \(1536\)\(\medspace = 2^{9} \cdot 3 \)
$\operatorname{res}(S)$$C_{12}:C_2^6$, of order \(768\)\(\medspace = 2^{8} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(2\)
$W$$D_4\times D_6$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \)

Related subgroups

Centralizer:$C_2^2$
Normalizer:$S_3\times C_2^2:\SD_{16}$
Normal closure:$D_6.\GL(2,\mathbb{Z}/4)$
Core:$D_{12}$
Minimal over-subgroups:$S_3\times C_2^2:\SD_{16}$
Maximal under-subgroups:$D_4\times D_6$$D_6:Q_8$$D_6:C_8$$C_6\times \SD_{16}$$C_6.D_8$$Q_8:D_6$$D_{12}:C_4$$C_2^2:\SD_{16}$

Other information

Number of subgroups in this conjugacy class$3$
Möbius function$0$
Projective image$S_3\times \GL(2,\mathbb{Z}/4)$