Properties

Label 1152.155870.8.j1.a1
Order $ 2^{4} \cdot 3^{2} $
Index $ 2^{3} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{12}.D_6$
Order: \(144\)\(\medspace = 2^{4} \cdot 3^{2} \)
Index: \(8\)\(\medspace = 2^{3} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Generators: $a, e^{2}, c^{8}, bc, c^{18}, c^{12}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Ambient group ($G$) information

Description: $C_3:\OD_{16}\times S_4$
Order: \(1152\)\(\medspace = 2^{7} \cdot 3^{2} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^5.D_6^2$, of order \(4608\)\(\medspace = 2^{9} \cdot 3^{2} \)
$\operatorname{Aut}(H)$ $C_2\times C_2^4.\SL(3,3)$, of order \(6912\)\(\medspace = 2^{8} \cdot 3^{3} \)
$\operatorname{res}(S)$$C_4:D_6^2$, of order \(576\)\(\medspace = 2^{6} \cdot 3^{2} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(2\)
$W$$S_3\times D_6$, of order \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)

Related subgroups

Centralizer:$C_4$
Normalizer:$S_3\times C_3:\OD_{16}$
Normal closure:$C_{12}.(C_2\times S_4)$
Core:$C_2\times C_{12}$
Minimal over-subgroups:$C_{12}.(C_2\times S_4)$$S_3\times C_3:\OD_{16}$
Maximal under-subgroups:$C_6\times C_{12}$$C_3^2:C_8$$C_3^2:C_8$$C_3:\OD_{16}$$C_3:\OD_{16}$$C_3:\OD_{16}$

Other information

Number of subgroups in this conjugacy class$4$
Möbius function$1$
Projective image$D_6\times S_4$