Properties

Label 1152.155870.6.c1.a1
Order $ 2^{6} \cdot 3 $
Index $ 2 \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{12}.C_2^4$
Order: \(192\)\(\medspace = 2^{6} \cdot 3 \)
Index: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Generators: $a, c^{12}, c^{6}, b, e^{2}, c^{3}, de^{3}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Ambient group ($G$) information

Description: $C_3:\OD_{16}\times S_4$
Order: \(1152\)\(\medspace = 2^{7} \cdot 3^{2} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^5.D_6^2$, of order \(4608\)\(\medspace = 2^{9} \cdot 3^{2} \)
$\operatorname{Aut}(H)$ $C_2^7.(D_6\times S_4)$, of order \(36864\)\(\medspace = 2^{12} \cdot 3^{2} \)
$\operatorname{res}(S)$$C_{12}:C_2^5$, of order \(384\)\(\medspace = 2^{7} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(4\)\(\medspace = 2^{2} \)
$W$$C_2\times D_6$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)

Related subgroups

Centralizer:$C_2^2\times C_4$
Normalizer:$D_4\times C_3:\OD_{16}$
Normal closure:$C_3:\OD_{16}\times S_4$
Core:$C_3:\OD_{16}$
Minimal over-subgroups:$D_4\times C_3:\OD_{16}$
Maximal under-subgroups:$C_2^3\times C_{12}$$C_6:\OD_{16}$$C_6:\OD_{16}$$C_6:\OD_{16}$$C_6:\OD_{16}$$C_{12}.C_2^3$$C_{12}.C_2^3$$C_6:\OD_{16}$$C_6:\OD_{16}$$C_6:\OD_{16}$$C_6:\OD_{16}$$C_2^2\times \OD_{16}$

Other information

Number of subgroups in this conjugacy class$3$
Möbius function$0$
Projective image$D_6\times S_4$