Subgroup ($H$) information
Description: | $C_{12}\times S_4$ |
Order: | \(288\)\(\medspace = 2^{5} \cdot 3^{2} \) |
Index: | \(4\)\(\medspace = 2^{2} \) |
Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
Generators: |
$ac^{6}, d, c^{8}, bc^{2}, e^{3}, e^{2}, c^{12}$
|
Derived length: | $3$ |
The subgroup is characteristic (hence normal), nonabelian, and monomial (hence solvable).
Ambient group ($G$) information
Description: | $C_3:\OD_{16}\times S_4$ |
Order: | \(1152\)\(\medspace = 2^{7} \cdot 3^{2} \) |
Exponent: | \(24\)\(\medspace = 2^{3} \cdot 3 \) |
Derived length: | $3$ |
The ambient group is nonabelian and monomial (hence solvable).
Quotient group ($Q$) structure
Description: | $C_4$ |
Order: | \(4\)\(\medspace = 2^{2} \) |
Exponent: | \(4\)\(\medspace = 2^{2} \) |
Automorphism Group: | $C_2$, of order \(2\) |
Outer Automorphisms: | $C_2$, of order \(2\) |
Derived length: | $1$ |
The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group) and a $p$-group.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_2^5.D_6^2$, of order \(4608\)\(\medspace = 2^{9} \cdot 3^{2} \) |
$\operatorname{Aut}(H)$ | $C_2^3\times S_4$, of order \(192\)\(\medspace = 2^{6} \cdot 3 \) |
$\operatorname{res}(\operatorname{Aut}(G))$ | $C_2^3\times S_4$, of order \(192\)\(\medspace = 2^{6} \cdot 3 \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(24\)\(\medspace = 2^{3} \cdot 3 \) |
$W$ | $C_2\times S_4$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \) |
Related subgroups
Other information
Möbius function | $0$ |
Projective image | $C_2^4.S_3^2$ |