Properties

Label 1152.155868.8.j1.a1
Order $ 2^{4} \cdot 3^{2} $
Index $ 2^{3} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{12}.D_6$
Order: \(144\)\(\medspace = 2^{4} \cdot 3^{2} \)
Index: \(8\)\(\medspace = 2^{3} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Generators: $\left(\begin{array}{rr} 11 & 5 \\ 0 & 1 \end{array}\right), \left(\begin{array}{rr} 13 & 4 \\ 8 & 1 \end{array}\right), \left(\begin{array}{rr} 11 & 5 \\ 15 & 16 \end{array}\right), \left(\begin{array}{rr} 15 & 12 \\ 16 & 15 \end{array}\right), \left(\begin{array}{rr} 17 & 0 \\ 0 & 17 \end{array}\right), \left(\begin{array}{rr} 9 & 0 \\ 0 & 9 \end{array}\right)$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Ambient group ($G$) information

Description: $C_6:C_8\times S_4$
Order: \(1152\)\(\medspace = 2^{7} \cdot 3^{2} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_6\times A_4).C_2^6.C_2$
$\operatorname{Aut}(H)$ $C_2\times D_6^2$, of order \(288\)\(\medspace = 2^{5} \cdot 3^{2} \)
$\operatorname{res}(S)$$C_2\times D_6^2$, of order \(288\)\(\medspace = 2^{5} \cdot 3^{2} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(2\)
$W$$S_3^2$, of order \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)

Related subgroups

Centralizer:$C_2\times C_4$
Normalizer:$S_3\times C_6:C_8$
Normal closure:$C_3:C_8\times S_4$
Core:$C_3:C_8$
Minimal over-subgroups:$C_3:C_8\times S_4$$S_3\times C_6:C_8$
Maximal under-subgroups:$S_3\times C_{12}$$C_3:C_{24}$$C_3^2:C_8$$C_6:C_8$$S_3\times C_8$
Autjugate subgroups:1152.155868.8.j1.b11152.155868.8.j1.c11152.155868.8.j1.d1

Other information

Number of subgroups in this conjugacy class$4$
Möbius function$1$
Projective image$D_6\times S_4$