Properties

Label 1152.154927.12.l1.a1
Order $ 2^{5} \cdot 3 $
Index $ 2^{2} \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$\SL(2,3):C_2^2$
Order: \(96\)\(\medspace = 2^{5} \cdot 3 \)
Index: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $b^{3}, e^{12}, de^{18}, e^{6}, b^{2}e^{4}, ce^{18}$ Copy content Toggle raw display
Derived length: $3$

The subgroup is nonabelian and solvable.

Ambient group ($G$) information

Description: $C_{12}.\GL(2,\mathbb{Z}/4)$
Order: \(1152\)\(\medspace = 2^{7} \cdot 3^{2} \)
Exponent: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Derived length:$4$

The ambient group is nonabelian and solvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_2\times C_4\times S_4).C_2^4$
$\operatorname{Aut}(H)$ $S_4^2$, of order \(576\)\(\medspace = 2^{6} \cdot 3^{2} \)
$\operatorname{res}(S)$$D_4\times S_4$, of order \(192\)\(\medspace = 2^{6} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(8\)\(\medspace = 2^{3} \)
$W$$D_4\times A_4$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \)

Related subgroups

Centralizer:$C_6$
Normalizer:$C_3\times Q_{16}.A_4$
Normal closure:$Q_{16}.A_4$
Core:$\SL(2,3):C_2$
Minimal over-subgroups:$Q_8.C_6^2$$Q_{16}.A_4$
Maximal under-subgroups:$\SL(2,3):C_2$$\SL(2,3):C_2$$D_4:C_2^2$$C_3\times Q_8$

Other information

Number of subgroups in this conjugacy class$2$
Möbius function$0$
Projective image$C_6.\GL(2,\mathbb{Z}/4)$