Subgroup ($H$) information
| Description: | $\SL(2,3):C_2^2$ | 
| Order: | \(96\)\(\medspace = 2^{5} \cdot 3 \) | 
| Index: | \(12\)\(\medspace = 2^{2} \cdot 3 \) | 
| Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) | 
| Generators: | $b^{3}, e^{12}, de^{18}, e^{6}, b^{2}e^{4}, ce^{18}$ | 
| Derived length: | $3$ | 
The subgroup is nonabelian and solvable.
Ambient group ($G$) information
| Description: | $C_{12}.\GL(2,\mathbb{Z}/4)$ | 
| Order: | \(1152\)\(\medspace = 2^{7} \cdot 3^{2} \) | 
| Exponent: | \(48\)\(\medspace = 2^{4} \cdot 3 \) | 
| Derived length: | $4$ | 
The ambient group is nonabelian and solvable.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $(C_2\times C_4\times S_4).C_2^4$ | 
| $\operatorname{Aut}(H)$ | $S_4^2$, of order \(576\)\(\medspace = 2^{6} \cdot 3^{2} \) | 
| $\operatorname{res}(S)$ | $D_4\times S_4$, of order \(192\)\(\medspace = 2^{6} \cdot 3 \) | 
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(8\)\(\medspace = 2^{3} \) | 
| $W$ | $D_4\times A_4$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \) | 
Related subgroups
Other information
| Number of subgroups in this conjugacy class | $2$ | 
| Möbius function | $0$ | 
| Projective image | $C_6.\GL(2,\mathbb{Z}/4)$ | 
