Subgroup ($H$) information
| Description: | $C_2\times A_4$ |
| Order: | \(24\)\(\medspace = 2^{3} \cdot 3 \) |
| Index: | \(48\)\(\medspace = 2^{4} \cdot 3 \) |
| Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) |
| Generators: |
$\langle(1,2)(3,8)(4,6)(5,7), (9,10)(11,12), (3,5,4)(6,8,7)(10,12,11), (9,12)(10,11)\rangle$
|
| Derived length: | $2$ |
The subgroup is nonabelian, monomial (hence solvable), metabelian, and an A-group.
Ambient group ($G$) information
| Description: | $C_3\times C_2^5:A_4$ |
| Order: | \(1152\)\(\medspace = 2^{7} \cdot 3^{2} \) |
| Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
| Derived length: | $2$ |
The ambient group is nonabelian, monomial (hence solvable), and metabelian.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_2^6.C_2^6.C_3^2.D_6$, of order \(442368\)\(\medspace = 2^{14} \cdot 3^{3} \) |
| $\operatorname{Aut}(H)$ | $S_4$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \) |
| $\operatorname{res}(S)$ | $S_4$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(96\)\(\medspace = 2^{5} \cdot 3 \) |
| $W$ | $A_4$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \) |
Related subgroups
| Centralizer: | $C_6$ | ||
| Normalizer: | $C_6\times A_4$ | ||
| Normal closure: | $C_2^5:A_4$ | ||
| Core: | $C_2^2$ | ||
| Minimal over-subgroups: | $C_2^3:A_4$ | $C_6\times A_4$ | |
| Maximal under-subgroups: | $A_4$ | $C_2^3$ | $C_6$ |
Other information
| Number of subgroups in this autjugacy class | $192$ |
| Number of conjugacy classes in this autjugacy class | $12$ |
| Möbius function | $0$ |
| Projective image | $C_3\times C_2^5:A_4$ |