Properties

Label 1152.153827.48.h1
Order $ 2^{3} \cdot 3 $
Index $ 2^{4} \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times A_4$
Order: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Index: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $\langle(1,2)(3,8)(4,6)(5,7), (9,10)(11,12), (3,5,4)(6,8,7)(10,12,11), (9,12)(10,11)\rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, monomial (hence solvable), metabelian, and an A-group.

Ambient group ($G$) information

Description: $C_3\times C_2^5:A_4$
Order: \(1152\)\(\medspace = 2^{7} \cdot 3^{2} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$2$

The ambient group is nonabelian, monomial (hence solvable), and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^6.C_2^6.C_3^2.D_6$, of order \(442368\)\(\medspace = 2^{14} \cdot 3^{3} \)
$\operatorname{Aut}(H)$ $S_4$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)
$\operatorname{res}(S)$$S_4$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(96\)\(\medspace = 2^{5} \cdot 3 \)
$W$$A_4$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)

Related subgroups

Centralizer:$C_6$
Normalizer:$C_6\times A_4$
Normal closure:$C_2^5:A_4$
Core:$C_2^2$
Minimal over-subgroups:$C_2^3:A_4$$C_6\times A_4$
Maximal under-subgroups:$A_4$$C_2^3$$C_6$

Other information

Number of subgroups in this autjugacy class$192$
Number of conjugacy classes in this autjugacy class$12$
Möbius function$0$
Projective image$C_3\times C_2^5:A_4$