Subgroup ($H$) information
| Description: | $C_{44}$ |
| Order: | \(44\)\(\medspace = 2^{2} \cdot 11 \) |
| Index: | \(26\)\(\medspace = 2 \cdot 13 \) |
| Exponent: | \(44\)\(\medspace = 2^{2} \cdot 11 \) |
| Generators: |
$b^{143}, b^{286}, b^{312}$
|
| Nilpotency class: | $1$ |
| Derived length: | $1$ |
The subgroup is the center (hence characteristic, normal, abelian, central, nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a direct factor, and cyclic (hence elementary ($p = 2,11$), hyperelementary, metacyclic, and a Z-group).
Ambient group ($G$) information
| Description: | $D_{13}\times C_{44}$ |
| Order: | \(1144\)\(\medspace = 2^{3} \cdot 11 \cdot 13 \) |
| Exponent: | \(572\)\(\medspace = 2^{2} \cdot 11 \cdot 13 \) |
| Derived length: | $2$ |
The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, and an A-group.
Quotient group ($Q$) structure
| Description: | $D_{13}$ |
| Order: | \(26\)\(\medspace = 2 \cdot 13 \) |
| Exponent: | \(26\)\(\medspace = 2 \cdot 13 \) |
| Automorphism Group: | $F_{13}$, of order \(156\)\(\medspace = 2^{2} \cdot 3 \cdot 13 \) |
| Outer Automorphisms: | $C_6$, of order \(6\)\(\medspace = 2 \cdot 3 \) |
| Nilpotency class: | $-1$ |
| Derived length: | $2$ |
The quotient is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_{65}.(C_2^3\times C_{12})$ |
| $\operatorname{Aut}(H)$ | $C_2\times C_{10}$, of order \(20\)\(\medspace = 2^{2} \cdot 5 \) |
| $\operatorname{res}(\operatorname{Aut}(G))$ | $C_2\times C_{10}$, of order \(20\)\(\medspace = 2^{2} \cdot 5 \) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(312\)\(\medspace = 2^{3} \cdot 3 \cdot 13 \) |
| $W$ | $C_1$, of order $1$ |
Related subgroups
| Centralizer: | $D_{13}\times C_{44}$ | |
| Normalizer: | $D_{13}\times C_{44}$ | |
| Complements: | $D_{13}$ $D_{13}$ | |
| Minimal over-subgroups: | $C_{572}$ | $C_2\times C_{44}$ |
| Maximal under-subgroups: | $C_{22}$ | $C_4$ |
Other information
| Möbius function | $13$ |
| Projective image | $D_{13}$ |