Properties

Label 11337408.cw.1296.E
Order $ 2^{2} \cdot 3^{7} $
Index $ 2^{4} \cdot 3^{4} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3^7:C_2^2$
Order: \(8748\)\(\medspace = 2^{2} \cdot 3^{7} \)
Index: \(1296\)\(\medspace = 2^{4} \cdot 3^{4} \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $\langle(19,20,21)(22,23,24)(25,27,26)(28,30,29)(31,32,33)(34,36,35), (1,3,2)(4,6,5) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group. Whether it is a direct factor or a semidirect factor has not been computed.

Ambient group ($G$) information

Description: $C_3^6.C_6^4:D_6$
Order: \(11337408\)\(\medspace = 2^{6} \cdot 3^{11} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Derived length:$4$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $C_3\wr S_3\times D_4$
Order: \(1296\)\(\medspace = 2^{4} \cdot 3^{4} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Automorphism Group: $(C_6\times \He_3).C_2^5$
Outer Automorphisms: $C_2^2\times C_6$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length: $3$

The quotient is nonabelian and supersolvable (hence solvable and monomial).

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^7.A_4.C_3.C_6^2.C_2^4$
$\operatorname{Aut}(H)$ $C_5^2\wr C_2:\OD_{16}$, of order \(967458816\)\(\medspace = 2^{14} \cdot 3^{10} \)
$\card{W}$\(139968\)\(\medspace = 2^{6} \cdot 3^{7} \)

Related subgroups

Centralizer:$C_3^4$
Normalizer:$C_3^6.C_6^4:D_6$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_3^6.C_6^4:D_6$