Properties

Label 1120.880.10.d1.b1
Order $ 2^{4} \cdot 7 $
Index $ 2 \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$Q_8:D_7$
Order: \(112\)\(\medspace = 2^{4} \cdot 7 \)
Index: \(10\)\(\medspace = 2 \cdot 5 \)
Exponent: \(56\)\(\medspace = 2^{3} \cdot 7 \)
Generators: $ac^{35}, b^{2}, c^{70}, bc^{61}, c^{20}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Ambient group ($G$) information

Description: $C_{140}.D_4$
Order: \(1120\)\(\medspace = 2^{5} \cdot 5 \cdot 7 \)
Exponent: \(280\)\(\medspace = 2^{3} \cdot 5 \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_2\times C_{70}).C_6.C_2^6$
$\operatorname{Aut}(H)$ $C_2\times D_4\times F_7$, of order \(672\)\(\medspace = 2^{5} \cdot 3 \cdot 7 \)
$\operatorname{res}(S)$$C_2\times D_4\times F_7$, of order \(672\)\(\medspace = 2^{5} \cdot 3 \cdot 7 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(8\)\(\medspace = 2^{3} \)
$W$$C_{14}:D_4$, of order \(112\)\(\medspace = 2^{4} \cdot 7 \)

Related subgroups

Centralizer:$C_2$
Normalizer:$C_{28}.D_4$
Normal closure:$Q_8:D_{35}$
Core:$C_7\times Q_8$
Minimal over-subgroups:$Q_8:D_{35}$$C_{28}.D_4$
Maximal under-subgroups:$C_7\times Q_8$$D_{28}$$C_7:C_8$$\SD_{16}$
Autjugate subgroups:1120.880.10.d1.a1

Other information

Number of subgroups in this conjugacy class$5$
Möbius function$1$
Projective image$C_{70}:D_4$