Subgroup ($H$) information
Description: | $C_{35}:\SD_{16}$ |
Order: | \(560\)\(\medspace = 2^{4} \cdot 5 \cdot 7 \) |
Index: | \(2\) |
Exponent: | \(280\)\(\medspace = 2^{3} \cdot 5 \cdot 7 \) |
Generators: |
$a, d^{20}, d^{84}, bd^{70}, d^{35}, d^{70}$
|
Derived length: | $2$ |
The subgroup is characteristic (hence normal), maximal, a semidirect factor, nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.
Ambient group ($G$) information
Description: | $D_{28}.D_{10}$ |
Order: | \(1120\)\(\medspace = 2^{5} \cdot 5 \cdot 7 \) |
Exponent: | \(280\)\(\medspace = 2^{3} \cdot 5 \cdot 7 \) |
Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.
Quotient group ($Q$) structure
Description: | $C_2$ |
Order: | \(2\) |
Exponent: | \(2\) |
Automorphism Group: | $C_1$, of order $1$ |
Outer Automorphisms: | $C_1$, of order $1$ |
Derived length: | $1$ |
The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_7.(C_{12}\times F_5).C_2^4$ |
$\operatorname{Aut}(H)$ | $C_{14}.(C_2^4\times C_{12})$ |
$\card{\operatorname{res}(\operatorname{Aut}(G))}$ | \(2688\)\(\medspace = 2^{7} \cdot 3 \cdot 7 \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(10\)\(\medspace = 2 \cdot 5 \) |
$W$ | $C_{14}:D_4$, of order \(112\)\(\medspace = 2^{4} \cdot 7 \) |
Related subgroups
Other information
Möbius function | $-1$ |
Projective image | $D_{10}:D_{14}$ |