Properties

Label 112.39.7.a1.a1
Order $ 2^{4} $
Index $ 7 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times Q_8$
Order: \(16\)\(\medspace = 2^{4} \)
Index: \(7\)
Exponent: \(4\)\(\medspace = 2^{2} \)
Generators: $a, b, c^{7}$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is characteristic (hence normal), maximal, a direct factor, nonabelian, a $2$-Sylow subgroup (hence nilpotent, solvable, supersolvable, a Hall subgroup, and monomial), a $p$-group (hence elementary and hyperelementary), metabelian, and rational.

Ambient group ($G$) information

Description: $Q_8\times C_{14}$
Order: \(112\)\(\medspace = 2^{4} \cdot 7 \)
Exponent: \(28\)\(\medspace = 2^{2} \cdot 7 \)
Nilpotency class:$2$
Derived length:$2$

The ambient group is nonabelian, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metabelian.

Quotient group ($Q$) structure

Description: $C_7$
Order: \(7\)
Exponent: \(7\)
Automorphism Group: $C_6$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Outer Automorphisms: $C_6$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Nilpotency class: $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, and simple.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_6\times C_2^3:S_4$, of order \(1152\)\(\medspace = 2^{7} \cdot 3^{2} \)
$\operatorname{Aut}(H)$ $C_2^3:S_4$, of order \(192\)\(\medspace = 2^{6} \cdot 3 \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_2^3:S_4$, of order \(192\)\(\medspace = 2^{6} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(6\)\(\medspace = 2 \cdot 3 \)
$W$$C_2^2$, of order \(4\)\(\medspace = 2^{2} \)

Related subgroups

Centralizer:$C_2\times C_{14}$
Normalizer:$Q_8\times C_{14}$
Complements:$C_7$
Minimal over-subgroups:$Q_8\times C_{14}$
Maximal under-subgroups:$C_2\times C_4$$C_2\times C_4$$C_2\times C_4$$Q_8$$Q_8$$Q_8$$Q_8$

Other information

Möbius function$-1$
Projective image$C_2\times C_{14}$