Properties

Label 11197440.c.20.B
Order $ 2^{8} \cdot 3^{7} $
Index $ 2^{2} \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3^5.C_2\wr S_3^2$
Order: \(559872\)\(\medspace = 2^{8} \cdot 3^{7} \)
Index: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Generators: $\langle(1,6,12)(2,7,13)(3,8,14)(4,9,15)(5,10,16)(11,17,18), (21,26)(22,27), (22,27) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $3$

The subgroup is nonabelian and solvable. Whether it is monomial has not been computed.

Ambient group ($G$) information

Description: $C_2^6.C_3^5:S_6$
Order: \(11197440\)\(\medspace = 2^{10} \cdot 3^{7} \cdot 5 \)
Exponent: \(360\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 5 \)
Derived length:$1$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_6^5.C_2^3.A_6.C_2$
$\operatorname{Aut}(H)$ $(C_2\times C_6^3).C_3^2.C_6^3.C_2^4$
$\card{W}$ not computed

Related subgroups

Centralizer: not computed
Normalizer:$C_3^5.S_4^2:D_4$
Normal closure:$C_2^6.C_3^5:S_6$
Core:$C_2\times C_6^5$

Other information

Number of subgroups in this autjugacy class$10$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image not computed