Subgroup ($H$) information
| Description: | $C_3^2\times C_6$ |
| Order: | \(54\)\(\medspace = 2 \cdot 3^{3} \) |
| Index: | \(20736\)\(\medspace = 2^{8} \cdot 3^{4} \) |
| Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) |
| Generators: |
$\langle(27,30)(28,29), (1,6,7)(2,5,9)(3,4,8), (1,7,6), (1,7,6)(3,4,8)\rangle$
|
| Nilpotency class: | $1$ |
| Derived length: | $1$ |
The subgroup is characteristic (hence normal), abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), and elementary for $p = 3$ (hence hyperelementary). Whether it is a direct factor or a semidirect factor has not been computed.
Ambient group ($G$) information
| Description: | $C_6^3.C_6^3:S_4$ |
| Order: | \(1119744\)\(\medspace = 2^{9} \cdot 3^{7} \) |
| Exponent: | \(36\)\(\medspace = 2^{2} \cdot 3^{2} \) |
| Derived length: | $4$ |
The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.
Quotient group ($Q$) structure
| Description: | $C_6:D_6^2:S_4$ |
| Order: | \(20736\)\(\medspace = 2^{8} \cdot 3^{4} \) |
| Exponent: | \(36\)\(\medspace = 2^{2} \cdot 3^{2} \) |
| Automorphism Group: | $C_5^4:D_4$, of order \(165888\)\(\medspace = 2^{11} \cdot 3^{4} \) |
| Outer Automorphisms: | $C_2^3$, of order \(8\)\(\medspace = 2^{3} \) |
| Nilpotency class: | $-1$ |
| Derived length: | $4$ |
The quotient is nonabelian and monomial (hence solvable).
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_3^6.C_2^6.C_6.C_2^6$, of order \(17915904\)\(\medspace = 2^{13} \cdot 3^{7} \) |
| $\operatorname{Aut}(H)$ | $\GL(3,3)$, of order \(11232\)\(\medspace = 2^{5} \cdot 3^{3} \cdot 13 \) |
| $W$ | $C_2\times S_4$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \) |
Related subgroups
| Centralizer: | $C_3\times C_6^5$ |
| Normalizer: | $C_6^3.C_6^3:S_4$ |
Other information
| Number of conjugacy classes in this autjugacy class | $1$ |
| Möbius function | not computed |
| Projective image | $C_3^6.C_2^5:S_4$ |