Properties

Label 111168.b.2316.h1.i1
Order $ 2^{4} \cdot 3 $
Index $ 2^{2} \cdot 3 \cdot 193 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{48}$
Order: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Index: \(2316\)\(\medspace = 2^{2} \cdot 3 \cdot 193 \)
Exponent: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Generators: $a^{3}, a^{24}, a^{16}, a^{6}, a^{12}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,3$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Ambient group ($G$) information

Description: $C_{2316}:C_{48}$
Order: \(111168\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 193 \)
Exponent: \(9264\)\(\medspace = 2^{4} \cdot 3 \cdot 193 \)
Derived length:$2$

The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{1158}.C_{96}.C_2^4$
$\operatorname{Aut}(H)$ $C_2^2\times C_4$, of order \(16\)\(\medspace = 2^{4} \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_{12}\times C_{48}$
Normalizer:$C_{12}\times C_{48}$
Normal closure:$C_{193}:C_{48}$
Core:$C_1$
Minimal over-subgroups:$C_{193}:C_{48}$$C_3\times C_{48}$$C_2\times C_{48}$
Maximal under-subgroups:$C_{24}$$C_{16}$
Autjugate subgroups:111168.b.2316.h1.a1111168.b.2316.h1.b1111168.b.2316.h1.c1111168.b.2316.h1.d1111168.b.2316.h1.e1111168.b.2316.h1.f1111168.b.2316.h1.g1111168.b.2316.h1.h1111168.b.2316.h1.j1111168.b.2316.h1.k1111168.b.2316.h1.l1

Other information

Number of subgroups in this conjugacy class$193$
Möbius function$0$
Projective image$C_{2316}:C_{48}$