Properties

Label 111168.a.579.b1.b1
Order $ 2^{6} \cdot 3 $
Index $ 3 \cdot 193 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{192}$
Order: \(192\)\(\medspace = 2^{6} \cdot 3 \)
Index: \(579\)\(\medspace = 3 \cdot 193 \)
Exponent: \(192\)\(\medspace = 2^{6} \cdot 3 \)
Generators: $a^{3}, a^{48}, a^{24}, a^{64}b^{193}, a^{96}, a^{6}, a^{12}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,3$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Ambient group ($G$) information

Description: $C_3\times F_{193}$
Order: \(111168\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 193 \)
Exponent: \(37056\)\(\medspace = 2^{6} \cdot 3 \cdot 193 \)
Derived length:$2$

The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{579}.C_{96}.C_2^2$
$\operatorname{Aut}(H)$ $C_2^2\times C_{16}$, of order \(64\)\(\medspace = 2^{6} \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_3\times C_{192}$
Normalizer:$C_3\times C_{192}$
Normal closure:$F_{193}$
Core:$C_1$
Minimal over-subgroups:$F_{193}$$C_3\times C_{192}$
Maximal under-subgroups:$C_{96}$$C_{64}$
Autjugate subgroups:111168.a.579.b1.a1111168.a.579.b1.c1

Other information

Number of subgroups in this conjugacy class$193$
Möbius function$1$
Projective image$C_3\times F_{193}$