Properties

Label 10935.b.1215.A
Order $ 3^{2} $
Index $ 3^{5} \cdot 5 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3^2$
Order: \(9\)\(\medspace = 3^{2} \)
Index: \(1215\)\(\medspace = 3^{5} \cdot 5 \)
Exponent: \(3\)
Generators: $a^{10}b^{4}c^{2}d^{2}f^{2}, b^{3}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal), abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and metacyclic.

Ambient group ($G$) information

Description: $C_3^6.C_{15}$
Order: \(10935\)\(\medspace = 3^{7} \cdot 5 \)
Exponent: \(45\)\(\medspace = 3^{2} \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian and metabelian (hence solvable). Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $C_3\wr C_5$
Order: \(1215\)\(\medspace = 3^{5} \cdot 5 \)
Exponent: \(15\)\(\medspace = 3 \cdot 5 \)
Automorphism Group: $C_2\times F_{81}:C_4$, of order \(51840\)\(\medspace = 2^{7} \cdot 3^{4} \cdot 5 \)
Outer Automorphisms: $\OD_{32}:C_4$, of order \(128\)\(\medspace = 2^{7} \)
Nilpotency class: $-1$
Derived length: $2$

The quotient is nonabelian, monomial (hence solvable), metabelian, and an A-group.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_5^4:C_2.C_2^4$, of order \(1399680\)\(\medspace = 2^{7} \cdot 3^{7} \cdot 5 \)
$\operatorname{Aut}(H)$ $\GL(2,3)$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)
$W$$C_3$, of order \(3\)

Related subgroups

Centralizer:$C_3^5:C_{15}$
Normalizer:$C_3^6.C_{15}$
Minimal over-subgroups:$C_3\times C_{15}$$C_9:C_3$$C_3^3$$C_9:C_3$
Maximal under-subgroups:$C_3$$C_3$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$-81$
Projective image$C_3^5:C_{15}$