Properties

Label 1088.31.32.c1.a1
Order $ 2 \cdot 17 $
Index $ 2^{5} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{34}$
Order: \(34\)\(\medspace = 2 \cdot 17 \)
Index: \(32\)\(\medspace = 2^{5} \)
Exponent: \(34\)\(\medspace = 2 \cdot 17 \)
Generators: $a, c^{2}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,17$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Ambient group ($G$) information

Description: $\OD_{32}:C_{34}$
Order: \(1088\)\(\medspace = 2^{6} \cdot 17 \)
Exponent: \(272\)\(\medspace = 2^{4} \cdot 17 \)
Nilpotency class:$3$
Derived length:$2$

The ambient group is nonabelian, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_2^2\times C_8).C_2^5$
$\operatorname{Aut}(H)$ $C_{16}$, of order \(16\)\(\medspace = 2^{4} \)
$\operatorname{res}(S)$$C_{16}$, of order \(16\)\(\medspace = 2^{4} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(16\)\(\medspace = 2^{4} \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_2\times C_{136}$
Normalizer:$C_2\times C_{136}$
Normal closure:$D_4\times C_{17}$
Core:$C_{17}$
Minimal over-subgroups:$C_2\times C_{34}$
Maximal under-subgroups:$C_{17}$$C_2$

Other information

Number of subgroups in this conjugacy class$4$
Möbius function$0$
Projective image$\OD_{32}:C_2$