Properties

Label 1088.31.32.a1.a1
Order $ 2 \cdot 17 $
Index $ 2^{5} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{34}$
Order: \(34\)\(\medspace = 2 \cdot 17 \)
Index: \(32\)\(\medspace = 2^{5} \)
Exponent: \(34\)\(\medspace = 2 \cdot 17 \)
Generators: $b^{8}, c^{2}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is the socle (hence characteristic and normal), cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,17$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), and central.

Ambient group ($G$) information

Description: $\OD_{32}:C_{34}$
Order: \(1088\)\(\medspace = 2^{6} \cdot 17 \)
Exponent: \(272\)\(\medspace = 2^{4} \cdot 17 \)
Nilpotency class:$3$
Derived length:$2$

The ambient group is nonabelian, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metabelian.

Quotient group ($Q$) structure

Description: $C_2^2:C_8$
Order: \(32\)\(\medspace = 2^{5} \)
Exponent: \(8\)\(\medspace = 2^{3} \)
Automorphism Group: $C_2^3:D_4$, of order \(64\)\(\medspace = 2^{6} \)
Outer Automorphisms: $C_2\times D_4$, of order \(16\)\(\medspace = 2^{4} \)
Nilpotency class: $2$
Derived length: $2$

The quotient is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_2^2\times C_8).C_2^5$
$\operatorname{Aut}(H)$ $C_{16}$, of order \(16\)\(\medspace = 2^{4} \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_{16}$, of order \(16\)\(\medspace = 2^{4} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(64\)\(\medspace = 2^{6} \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$\OD_{32}:C_{34}$
Normalizer:$\OD_{32}:C_{34}$
Minimal over-subgroups:$C_2\times C_{34}$$C_{68}$$C_{68}$$C_2\times C_{34}$$C_{68}$
Maximal under-subgroups:$C_{17}$$C_2$

Other information

Möbius function$0$
Projective image$C_2^2:C_8$