Properties

Label 1088.296.8.a1.a1
Order $ 2^{3} \cdot 17 $
Index $ 2^{3} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times C_{68}$
Order: \(136\)\(\medspace = 2^{3} \cdot 17 \)
Index: \(8\)\(\medspace = 2^{3} \)
Exponent: \(68\)\(\medspace = 2^{2} \cdot 17 \)
Generators: $b^{4}c^{34}, c^{51}, c^{34}, c^{4}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal), abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 2$ (hence hyperelementary), and metacyclic.

Ambient group ($G$) information

Description: $C_{68}.D_8$
Order: \(1088\)\(\medspace = 2^{6} \cdot 17 \)
Exponent: \(136\)\(\medspace = 2^{3} \cdot 17 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Quotient group ($Q$) structure

Description: $D_4$
Order: \(8\)\(\medspace = 2^{3} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Automorphism Group: $D_4$, of order \(8\)\(\medspace = 2^{3} \)
Outer Automorphisms: $C_2$, of order \(2\)
Nilpotency class: $2$
Derived length: $2$

The quotient is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), metacyclic (hence metabelian), and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{17}:((C_2^4\times C_8).C_2^5)$
$\operatorname{Aut}(H)$ $D_4\times C_{16}$, of order \(128\)\(\medspace = 2^{7} \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_2\times C_{16}$, of order \(32\)\(\medspace = 2^{5} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(2176\)\(\medspace = 2^{7} \cdot 17 \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_4:C_{136}$
Normalizer:$C_{68}.D_8$
Minimal over-subgroups:$C_4\times C_{68}$$C_{34}:Q_8$$C_2\times C_{136}$
Maximal under-subgroups:$C_2\times C_{34}$$C_{68}$$C_{68}$$C_2\times C_4$

Other information

Möbius function$0$
Projective image$D_{34}:C_4$