Subgroup ($H$) information
Description: | $C_2\times C_{68}$ |
Order: | \(136\)\(\medspace = 2^{3} \cdot 17 \) |
Index: | \(8\)\(\medspace = 2^{3} \) |
Exponent: | \(68\)\(\medspace = 2^{2} \cdot 17 \) |
Generators: |
$b^{4}c^{34}, c^{51}, c^{34}, c^{4}$
|
Nilpotency class: | $1$ |
Derived length: | $1$ |
The subgroup is characteristic (hence normal), abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 2$ (hence hyperelementary), and metacyclic.
Ambient group ($G$) information
Description: | $C_{68}.D_8$ |
Order: | \(1088\)\(\medspace = 2^{6} \cdot 17 \) |
Exponent: | \(136\)\(\medspace = 2^{3} \cdot 17 \) |
Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.
Quotient group ($Q$) structure
Description: | $D_4$ |
Order: | \(8\)\(\medspace = 2^{3} \) |
Exponent: | \(4\)\(\medspace = 2^{2} \) |
Automorphism Group: | $D_4$, of order \(8\)\(\medspace = 2^{3} \) |
Outer Automorphisms: | $C_2$, of order \(2\) |
Nilpotency class: | $2$ |
Derived length: | $2$ |
The quotient is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), metacyclic (hence metabelian), and rational.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_{17}:((C_2^4\times C_8).C_2^5)$ |
$\operatorname{Aut}(H)$ | $D_4\times C_{16}$, of order \(128\)\(\medspace = 2^{7} \) |
$\operatorname{res}(\operatorname{Aut}(G))$ | $C_2\times C_{16}$, of order \(32\)\(\medspace = 2^{5} \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(2176\)\(\medspace = 2^{7} \cdot 17 \) |
$W$ | $C_2$, of order \(2\) |
Related subgroups
Centralizer: | $C_4:C_{136}$ | |||
Normalizer: | $C_{68}.D_8$ | |||
Minimal over-subgroups: | $C_4\times C_{68}$ | $C_{34}:Q_8$ | $C_2\times C_{136}$ | |
Maximal under-subgroups: | $C_2\times C_{34}$ | $C_{68}$ | $C_{68}$ | $C_2\times C_4$ |
Other information
Möbius function | $0$ |
Projective image | $D_{34}:C_4$ |