Properties

Label 1088.249.16.c1
Order $ 2^{2} \cdot 17 $
Index $ 2^{4} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{68}$
Order: \(68\)\(\medspace = 2^{2} \cdot 17 \)
Index: \(16\)\(\medspace = 2^{4} \)
Exponent: \(68\)\(\medspace = 2^{2} \cdot 17 \)
Generators: $c^{2}, d^{2}, c^{4}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is the center (hence characteristic, normal, abelian, central, nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group) and cyclic (hence elementary ($p = 2,17$), hyperelementary, metacyclic, and a Z-group).

Ambient group ($G$) information

Description: $C_{136}.C_2^3$
Order: \(1088\)\(\medspace = 2^{6} \cdot 17 \)
Exponent: \(136\)\(\medspace = 2^{3} \cdot 17 \)
Nilpotency class:$2$
Derived length:$2$

The ambient group is nonabelian, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metabelian.

Quotient group ($Q$) structure

Description: $C_2^4$
Order: \(16\)\(\medspace = 2^{4} \)
Exponent: \(2\)
Automorphism Group: $A_8$, of order \(20160\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 5 \cdot 7 \)
Outer Automorphisms: $A_8$, of order \(20160\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 5 \cdot 7 \)
Nilpotency class: $1$
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^3:A_4.C_8.C_2^5$
$\operatorname{Aut}(H)$ $C_2\times C_{16}$, of order \(32\)\(\medspace = 2^{5} \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_2\times C_{16}$, of order \(32\)\(\medspace = 2^{5} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(768\)\(\medspace = 2^{8} \cdot 3 \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_{136}.C_2^3$
Normalizer:$C_{136}.C_2^3$
Minimal over-subgroups:$C_2\times C_{68}$$C_2\times C_{68}$$C_{136}$
Maximal under-subgroups:$C_{34}$$C_4$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$64$
Projective image$C_2^4$