Properties

Label 1088.1650.32.c1.a1
Order $ 2 \cdot 17 $
Index $ 2^{5} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$D_{17}$
Order: \(34\)\(\medspace = 2 \cdot 17 \)
Index: \(32\)\(\medspace = 2^{5} \)
Exponent: \(34\)\(\medspace = 2 \cdot 17 \)
Generators: $a, c^{4}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.

Ambient group ($G$) information

Description: $D_{68}.C_8$
Order: \(1088\)\(\medspace = 2^{6} \cdot 17 \)
Exponent: \(272\)\(\medspace = 2^{4} \cdot 17 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2\times D_4\times F_{17}$, of order \(4352\)\(\medspace = 2^{8} \cdot 17 \)
$\operatorname{Aut}(H)$ $F_{17}$, of order \(272\)\(\medspace = 2^{4} \cdot 17 \)
$\operatorname{res}(S)$$F_{17}$, of order \(272\)\(\medspace = 2^{4} \cdot 17 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(4\)\(\medspace = 2^{2} \)
$W$$C_{17}:C_4$, of order \(68\)\(\medspace = 2^{2} \cdot 17 \)

Related subgroups

Centralizer:$C_4$
Normalizer:$D_{17}:C_8$
Normal closure:$D_{68}$
Core:$C_{17}$
Minimal over-subgroups:$D_{34}$
Maximal under-subgroups:$C_{17}$$C_2$

Other information

Number of subgroups in this conjugacy class$4$
Möbius function$0$
Projective image$D_{68}.C_8$