Properties

Label 1088.154.4.g1.a1
Order $ 2^{4} \cdot 17 $
Index $ 2^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$\OD_{16}\times C_{17}$
Order: \(272\)\(\medspace = 2^{4} \cdot 17 \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(136\)\(\medspace = 2^{3} \cdot 17 \)
Generators: $c^{102}, c^{68}, c^{8}, b^{2}c^{17}, a$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is nonabelian, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metacyclic (hence metabelian).

Ambient group ($G$) information

Description: $C_{136}.D_4$
Order: \(1088\)\(\medspace = 2^{6} \cdot 17 \)
Exponent: \(136\)\(\medspace = 2^{3} \cdot 17 \)
Nilpotency class:$3$
Derived length:$2$

The ambient group is nonabelian, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{16}\times C_4.C_2^5.C_2$
$\operatorname{Aut}(H)$ $C_2\times D_4\times C_{16}$, of order \(256\)\(\medspace = 2^{8} \)
$\operatorname{res}(S)$$C_2^3\times C_{16}$, of order \(128\)\(\medspace = 2^{7} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(16\)\(\medspace = 2^{4} \)
$W$$C_2^2$, of order \(4\)\(\medspace = 2^{2} \)

Related subgroups

Centralizer:$C_{136}$
Normalizer:$\OD_{16}:C_{34}$
Normal closure:$\OD_{16}:C_{34}$
Core:$C_{136}$
Minimal over-subgroups:$\OD_{16}:C_{34}$
Maximal under-subgroups:$C_{136}$$C_2\times C_{68}$$C_{136}$$\OD_{16}$

Other information

Number of subgroups in this conjugacy class$2$
Möbius function$0$
Projective image$C_4:D_4$