Properties

Label 1088.154.2.a1.b1
Order $ 2^{5} \cdot 17 $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$Q_{16}:C_{34}$
Order: \(544\)\(\medspace = 2^{5} \cdot 17 \)
Index: \(2\)
Exponent: \(136\)\(\medspace = 2^{3} \cdot 17 \)
Generators: $c^{8}, b^{2}, c^{68}, c^{102}, bc^{17}, a$ Copy content Toggle raw display
Nilpotency class: $3$
Derived length: $2$

The subgroup is normal, maximal, nonabelian, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metabelian.

Ambient group ($G$) information

Description: $C_{136}.D_4$
Order: \(1088\)\(\medspace = 2^{6} \cdot 17 \)
Exponent: \(136\)\(\medspace = 2^{3} \cdot 17 \)
Nilpotency class:$3$
Derived length:$2$

The ambient group is nonabelian, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metabelian.

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Nilpotency class: $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{16}\times C_4.C_2^5.C_2$
$\operatorname{Aut}(H)$ $(C_2^4\times C_8).C_2^3$
$\card{\operatorname{res}(S)}$\(1024\)\(\medspace = 2^{10} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(2\)
$W$$C_4:D_4$, of order \(32\)\(\medspace = 2^{5} \)

Related subgroups

Centralizer:$C_{34}$
Normalizer:$C_{136}.D_4$
Minimal over-subgroups:$C_{136}.D_4$
Maximal under-subgroups:$D_4:C_{34}$$Q_8\times C_{34}$$\OD_{16}\times C_{17}$$\SD_{16}\times C_{17}$$Q_{16}\times C_{17}$$Q_{16}:C_2$
Autjugate subgroups:1088.154.2.a1.a1

Other information

Möbius function$-1$
Projective image$C_4:D_4$