Properties

Label 1088.1448.4.c1.a1
Order $ 2^{4} \cdot 17 $
Index $ 2^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{34}:C_8$
Order: \(272\)\(\medspace = 2^{4} \cdot 17 \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(136\)\(\medspace = 2^{3} \cdot 17 \)
Generators: $b^{8}, c^{2}, b^{4}, c^{17}, b^{2}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, and an A-group.

Ambient group ($G$) information

Description: $D_{68}.C_8$
Order: \(1088\)\(\medspace = 2^{6} \cdot 17 \)
Exponent: \(272\)\(\medspace = 2^{4} \cdot 17 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Quotient group ($Q$) structure

Description: $C_2^2$
Order: \(4\)\(\medspace = 2^{2} \)
Exponent: \(2\)
Automorphism Group: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Outer Automorphisms: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{17}:((C_2^2\times C_8).C_2^4)$
$\operatorname{Aut}(H)$ $C_2\times D_4\times F_{17}$, of order \(4352\)\(\medspace = 2^{8} \cdot 17 \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_2^2\times F_{17}$, of order \(1088\)\(\medspace = 2^{6} \cdot 17 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(8\)\(\medspace = 2^{3} \)
$W$$C_{34}:C_4$, of order \(136\)\(\medspace = 2^{3} \cdot 17 \)

Related subgroups

Centralizer:$C_2\times C_4$
Normalizer:$D_{68}.C_8$
Minimal over-subgroups:$C_8.D_{34}$$C_{34}:C_{16}$$C_{17}:\OD_{32}$
Maximal under-subgroups:$C_2\times C_{68}$$C_{17}:C_8$$C_{17}:C_8$$C_2\times C_8$

Other information

Möbius function$2$
Projective image$D_{34}:C_4$