Properties

Label 1088.1448.272.a1.a1
Order $ 2^{2} $
Index $ 2^{4} \cdot 17 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^2$
Order: \(4\)\(\medspace = 2^{2} \)
Index: \(272\)\(\medspace = 2^{4} \cdot 17 \)
Exponent: \(2\)
Generators: $b^{8}, c^{17}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal), abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.

Ambient group ($G$) information

Description: $D_{68}.C_8$
Order: \(1088\)\(\medspace = 2^{6} \cdot 17 \)
Exponent: \(272\)\(\medspace = 2^{4} \cdot 17 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Quotient group ($Q$) structure

Description: $C_{17}:\OD_{16}$
Order: \(272\)\(\medspace = 2^{4} \cdot 17 \)
Exponent: \(136\)\(\medspace = 2^{3} \cdot 17 \)
Automorphism Group: $D_4\times F_{17}$, of order \(2176\)\(\medspace = 2^{7} \cdot 17 \)
Outer Automorphisms: $C_2\times C_8$, of order \(16\)\(\medspace = 2^{4} \)
Nilpotency class: $-1$
Derived length: $2$

The quotient is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and hyperelementary for $p = 2$.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{17}:((C_2^2\times C_8).C_2^4)$
$\operatorname{Aut}(H)$ $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_2$, of order \(2\)
$\card{\operatorname{ker}(\operatorname{res})}$\(4352\)\(\medspace = 2^{8} \cdot 17 \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_{34}:C_{16}$
Normalizer:$D_{68}.C_8$
Minimal over-subgroups:$C_2\times C_{34}$$C_2\times C_4$$D_4$
Maximal under-subgroups:$C_2$$C_2$

Other information

Möbius function$0$
Projective image$D_{34}:C_8$