Properties

Label 1088.1448.16.d1.a1
Order $ 2^{2} \cdot 17 $
Index $ 2^{4} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$D_{34}$
Order: \(68\)\(\medspace = 2^{2} \cdot 17 \)
Index: \(16\)\(\medspace = 2^{4} \)
Exponent: \(34\)\(\medspace = 2 \cdot 17 \)
Generators: $a, b^{8}, c^{2}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, and an A-group.

Ambient group ($G$) information

Description: $D_{68}.C_8$
Order: \(1088\)\(\medspace = 2^{6} \cdot 17 \)
Exponent: \(272\)\(\medspace = 2^{4} \cdot 17 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{17}:((C_2^2\times C_8).C_2^4)$
$\operatorname{Aut}(H)$ $C_2\times F_{17}$, of order \(544\)\(\medspace = 2^{5} \cdot 17 \)
$\operatorname{res}(S)$$C_2\times F_{17}$, of order \(544\)\(\medspace = 2^{5} \cdot 17 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(8\)\(\medspace = 2^{3} \)
$W$$D_{34}$, of order \(68\)\(\medspace = 2^{2} \cdot 17 \)

Related subgroups

Centralizer:$C_8$
Normalizer:$C_8.D_{34}$
Normal closure:$D_{68}$
Core:$C_{34}$
Minimal over-subgroups:$D_{68}$$C_{17}:D_4$$C_4\times D_{17}$
Maximal under-subgroups:$C_{34}$$D_{17}$$C_2^2$

Other information

Number of subgroups in this conjugacy class$2$
Möbius function$0$
Projective image$D_{34}:C_8$