Subgroup ($H$) information
| Description: | $C_2^2$ | 
| Order: | \(4\)\(\medspace = 2^{2} \) | 
| Index: | \(272\)\(\medspace = 2^{4} \cdot 17 \) | 
| Exponent: | \(2\) | 
| Generators: | $abc^{34}, b^{2}$ | 
| Nilpotency class: | $1$ | 
| Derived length: | $1$ | 
The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.
Ambient group ($G$) information
| Description: | $C_{136}:D_4$ | 
| Order: | \(1088\)\(\medspace = 2^{6} \cdot 17 \) | 
| Exponent: | \(136\)\(\medspace = 2^{3} \cdot 17 \) | 
| Nilpotency class: | $2$ | 
| Derived length: | $2$ | 
The ambient group is nonabelian, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metabelian.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_2^7\times C_{16}$ | 
| $\operatorname{Aut}(H)$ | $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \) | 
| $\operatorname{res}(S)$ | $C_2$, of order \(2\) | 
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(512\)\(\medspace = 2^{9} \) | 
| $W$ | $C_2$, of order \(2\) | 
Related subgroups
| Centralizer: | $C_2^2\times C_{68}$ | |
| Normalizer: | $C_2^2:C_{136}$ | |
| Normal closure: | $C_2^3$ | |
| Core: | $C_2$ | |
| Minimal over-subgroups: | $C_2\times C_{34}$ | $C_2^3$ | 
| Maximal under-subgroups: | $C_2$ | $C_2$ | 
Other information
| Number of subgroups in this conjugacy class | $2$ | 
| Möbius function | $0$ | 
| Projective image | $\OD_{16}:C_{34}$ | 
