Subgroup ($H$) information
| Description: | $C_{136}$ |
| Order: | \(136\)\(\medspace = 2^{3} \cdot 17 \) |
| Index: | \(8\)\(\medspace = 2^{3} \) |
| Exponent: | \(136\)\(\medspace = 2^{3} \cdot 17 \) |
| Generators: |
$ac^{17}, c^{8}, c^{68}, b^{2}c^{34}$
|
| Nilpotency class: | $1$ |
| Derived length: | $1$ |
The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,17$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).
Ambient group ($G$) information
| Description: | $(C_4\times C_8):C_{34}$ |
| Order: | \(1088\)\(\medspace = 2^{6} \cdot 17 \) |
| Exponent: | \(136\)\(\medspace = 2^{3} \cdot 17 \) |
| Nilpotency class: | $2$ |
| Derived length: | $2$ |
The ambient group is nonabelian, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metabelian.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $(C_2^7\times C_8).C_2^2$ |
| $\operatorname{Aut}(H)$ | $C_2^2\times C_{16}$, of order \(64\)\(\medspace = 2^{6} \) |
| $\operatorname{res}(S)$ | $C_2^2\times C_{16}$, of order \(64\)\(\medspace = 2^{6} \) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(16\)\(\medspace = 2^{4} \) |
| $W$ | $C_2$, of order \(2\) |
Related subgroups
Other information
| Number of subgroups in this conjugacy class | $2$ |
| Möbius function | $0$ |
| Projective image | $D_4:C_2$ |