Properties

Label 1088.114.8.h1.b1
Order $ 2^{3} \cdot 17 $
Index $ 2^{3} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{136}$
Order: \(136\)\(\medspace = 2^{3} \cdot 17 \)
Index: \(8\)\(\medspace = 2^{3} \)
Exponent: \(136\)\(\medspace = 2^{3} \cdot 17 \)
Generators: $ac^{17}, c^{8}, c^{68}, b^{2}c^{34}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,17$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Ambient group ($G$) information

Description: $(C_4\times C_8):C_{34}$
Order: \(1088\)\(\medspace = 2^{6} \cdot 17 \)
Exponent: \(136\)\(\medspace = 2^{3} \cdot 17 \)
Nilpotency class:$2$
Derived length:$2$

The ambient group is nonabelian, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_2^7\times C_8).C_2^2$
$\operatorname{Aut}(H)$ $C_2^2\times C_{16}$, of order \(64\)\(\medspace = 2^{6} \)
$\operatorname{res}(S)$$C_2^2\times C_{16}$, of order \(64\)\(\medspace = 2^{6} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(16\)\(\medspace = 2^{4} \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_2\times C_{136}$
Normalizer:$C_8:C_{68}$
Normal closure:$C_2\times C_{136}$
Core:$C_{68}$
Minimal over-subgroups:$C_2\times C_{136}$
Maximal under-subgroups:$C_{68}$$C_8$
Autjugate subgroups:1088.114.8.h1.a1

Other information

Number of subgroups in this conjugacy class$2$
Möbius function$0$
Projective image$D_4:C_2$