Properties

Label 1088.114.17.a1.a1
Order $ 2^{6} $
Index $ 17 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_4^2.C_2^2$
Order: \(64\)\(\medspace = 2^{6} \)
Index: \(17\)
Exponent: \(8\)\(\medspace = 2^{3} \)
Generators: $a, b, c^{17}$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is characteristic (hence normal), maximal, a direct factor, nonabelian, a $2$-Sylow subgroup (hence nilpotent, solvable, supersolvable, a Hall subgroup, and monomial), a $p$-group (hence elementary and hyperelementary), and metabelian.

Ambient group ($G$) information

Description: $(C_4\times C_8):C_{34}$
Order: \(1088\)\(\medspace = 2^{6} \cdot 17 \)
Exponent: \(136\)\(\medspace = 2^{3} \cdot 17 \)
Nilpotency class:$2$
Derived length:$2$

The ambient group is nonabelian, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metabelian.

Quotient group ($Q$) structure

Description: $C_{17}$
Order: \(17\)
Exponent: \(17\)
Automorphism Group: $C_{16}$, of order \(16\)\(\medspace = 2^{4} \)
Outer Automorphisms: $C_{16}$, of order \(16\)\(\medspace = 2^{4} \)
Nilpotency class: $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, and simple.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_2^7\times C_8).C_2^2$
$\operatorname{Aut}(H)$ $C_2^6:C_4$, of order \(256\)\(\medspace = 2^{8} \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_2^6:C_4$, of order \(256\)\(\medspace = 2^{8} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(16\)\(\medspace = 2^{4} \)
$W$$C_2^3$, of order \(8\)\(\medspace = 2^{3} \)

Related subgroups

Centralizer:$C_2\times C_{68}$
Normalizer:$(C_4\times C_8):C_{34}$
Complements:$C_{17}$
Minimal over-subgroups:$(C_4\times C_8):C_{34}$
Maximal under-subgroups:$C_4^2:C_2$$C_2^2:C_8$$C_2^2:C_8$$C_4\times C_8$$C_8:C_4$$C_4:C_8$$C_4:C_8$

Other information

Möbius function$-1$
Projective image$C_2^2\times C_{34}$