Properties

Label 108000.b.120.bv1
Order $ 2^{2} \cdot 3^{2} \cdot 5^{2} $
Index $ 2^{3} \cdot 3 \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{15}^2:C_4$
Order: \(900\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5^{2} \)
Index: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Generators: $a^{3}b^{3}c^{3}de^{4}f, f, a^{2}c^{4}d^{13}e^{3}, c^{2}d^{20}, d^{20}, ef^{3}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Ambient group ($G$) information

Description: $D_5^3.C_3^2:D_6$
Order: \(108000\)\(\medspace = 2^{5} \cdot 3^{3} \cdot 5^{3} \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$4$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$D_5^3:\He_3.C_2^3$, of order \(216000\)\(\medspace = 2^{6} \cdot 3^{3} \cdot 5^{3} \)
$\operatorname{Aut}(H)$ $D_6\times F_5\wr C_2$, of order \(9600\)\(\medspace = 2^{7} \cdot 3 \cdot 5^{2} \)
$W$$S_3\times C_5:F_5$, of order \(600\)\(\medspace = 2^{3} \cdot 3 \cdot 5^{2} \)

Related subgroups

Centralizer:$C_6$
Normalizer:$C_{15}^2.C_4.C_2^2$
Normal closure:$D_5^3.C_3^2:C_6$
Core:$C_3^2$
Minimal over-subgroups:$C_3\times C_5^3:(C_3:C_4)$$C_{15}:(S_3\times F_5)$$C_6\times C_{15}:F_5$$C_{15}:(S_3\times F_5)$
Maximal under-subgroups:$C_{15}^2:C_2$$C_{15}:F_5$$C_{15}:F_5$$C_{15}:C_{12}$$C_{15}:C_{12}$

Other information

Number of subgroups in this autjugacy class$30$
Number of conjugacy classes in this autjugacy class$1$
Möbius function$0$
Projective image$D_5^3.C_3^2:D_6$