Properties

Label 1080.538.6.d1
Order $ 2^{2} \cdot 3^{2} \cdot 5 $
Index $ 2 \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_5\times S_3^2$
Order: \(180\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5 \)
Index: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Generators: $ab, d^{3}, b^{2}, c^{3}, d^{10}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Ambient group ($G$) information

Description: $C_5\times S_3^3$
Order: \(1080\)\(\medspace = 2^{3} \cdot 3^{3} \cdot 5 \)
Exponent: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_4\times S_3\wr S_3$, of order \(5184\)\(\medspace = 2^{6} \cdot 3^{4} \)
$\operatorname{Aut}(H)$ $C_4\times \SOPlus(4,2)$, of order \(288\)\(\medspace = 2^{5} \cdot 3^{2} \)
$\operatorname{res}(S)$$C_4\times S_3^2$, of order \(144\)\(\medspace = 2^{4} \cdot 3^{2} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(2\)
$W$$S_3^2$, of order \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)

Related subgroups

Centralizer:$C_{10}$
Normalizer:$C_{10}\times S_3^2$
Normal closure:$C_{15}:S_3^2$
Core:$S_3\times C_{15}$
Minimal over-subgroups:$C_{15}:S_3^2$$C_{10}\times S_3^2$
Maximal under-subgroups:$S_3\times C_{15}$$S_3\times C_{15}$$C_{15}:S_3$$S_3\times C_{10}$$S_3\times C_{10}$$S_3^2$

Other information

Number of subgroups in this autjugacy class$18$
Number of conjugacy classes in this autjugacy class$6$
Möbius function$1$
Projective image$S_3^3$