Properties

Label 1080.178.15.b1.a1
Order $ 2^{3} \cdot 3^{2} $
Index $ 3 \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$D_4\times C_9$
Order: \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
Index: \(15\)\(\medspace = 3 \cdot 5 \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Generators: $a, b^{6}, c^{15}, b^{2}, b^{9}$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is nonabelian, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metacyclic (hence metabelian).

Ambient group ($G$) information

Description: $C_{30}.C_6^2$
Order: \(1080\)\(\medspace = 2^{3} \cdot 3^{3} \cdot 5 \)
Exponent: \(180\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(D_5\times \He_3).C_2^5$
$\operatorname{Aut}(H)$ $C_6\times D_4$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)
$\operatorname{res}(S)$$C_2^2\times C_6$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(24\)\(\medspace = 2^{3} \cdot 3 \)
$W$$C_2^2$, of order \(4\)\(\medspace = 2^{2} \)

Related subgroups

Centralizer:$C_3\times C_{18}$
Normalizer:$C_{12}:C_{18}$
Normal closure:$C_{45}:D_4$
Core:$C_2\times C_{18}$
Minimal over-subgroups:$C_{45}:D_4$$C_{12}:C_{18}$
Maximal under-subgroups:$C_2\times C_{18}$$C_2\times C_{18}$$C_{36}$$C_3\times D_4$
Autjugate subgroups:1080.178.15.b1.b11080.178.15.b1.c1

Other information

Number of subgroups in this conjugacy class$5$
Möbius function$1$
Projective image$C_3\times D_{10}$