Properties

Label 1080.178.12.f1.b1
Order $ 2 \cdot 3^{2} \cdot 5 $
Index $ 2^{2} \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_9\times D_5$
Order: \(90\)\(\medspace = 2 \cdot 3^{2} \cdot 5 \)
Index: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Exponent: \(90\)\(\medspace = 2 \cdot 3^{2} \cdot 5 \)
Generators: $a, b^{6}, c^{6}, b^{2}c^{20}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.

Ambient group ($G$) information

Description: $C_{30}.C_6^2$
Order: \(1080\)\(\medspace = 2^{3} \cdot 3^{3} \cdot 5 \)
Exponent: \(180\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(D_5\times \He_3).C_2^5$
$\operatorname{Aut}(H)$ $C_6\times F_5$, of order \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
$\operatorname{res}(S)$$C_6\times F_5$, of order \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(12\)\(\medspace = 2^{2} \cdot 3 \)
$W$$D_5$, of order \(10\)\(\medspace = 2 \cdot 5 \)

Related subgroups

Centralizer:$C_3\times C_{18}$
Normalizer:$C_{30}:C_{18}$
Normal closure:$C_9\times D_{10}$
Core:$C_{45}$
Minimal over-subgroups:$C_{15}:C_{18}$$C_9\times D_{10}$
Maximal under-subgroups:$C_{45}$$C_3\times D_5$$C_{18}$
Autjugate subgroups:1080.178.12.f1.a11080.178.12.f1.c1

Other information

Number of subgroups in this conjugacy class$2$
Möbius function$0$
Projective image$C_{15}:D_4$