Properties

Label 1080.178.12.e1.a1
Order $ 2 \cdot 3^{2} \cdot 5 $
Index $ 2^{2} \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3^2\times D_5$
Order: \(90\)\(\medspace = 2 \cdot 3^{2} \cdot 5 \)
Index: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Exponent: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Generators: $a, b^{6}, c^{6}, c^{20}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Ambient group ($G$) information

Description: $C_{30}.C_6^2$
Order: \(1080\)\(\medspace = 2^{3} \cdot 3^{3} \cdot 5 \)
Exponent: \(180\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(D_5\times \He_3).C_2^5$
$\operatorname{Aut}(H)$ $F_5\times \GL(2,3)$, of order \(960\)\(\medspace = 2^{6} \cdot 3 \cdot 5 \)
$\operatorname{res}(S)$$D_6\times F_5$, of order \(240\)\(\medspace = 2^{4} \cdot 3 \cdot 5 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(18\)\(\medspace = 2 \cdot 3^{2} \)
$W$$D_5$, of order \(10\)\(\medspace = 2 \cdot 5 \)

Related subgroups

Centralizer:$C_3\times C_{18}$
Normalizer:$C_{30}:C_{18}$
Normal closure:$C_3^2\times D_{10}$
Core:$C_3\times C_{15}$
Minimal over-subgroups:$C_{15}:C_{18}$$C_3^2\times D_{10}$
Maximal under-subgroups:$C_3\times C_{15}$$C_3\times D_5$$C_3\times D_5$$C_3\times D_5$$C_3\times D_5$$C_3\times C_6$

Other information

Number of subgroups in this conjugacy class$2$
Möbius function$0$
Projective image$C_{15}:D_4$