Properties

Label 10752.u.4.a1
Order $ 2^{7} \cdot 3 \cdot 7 $
Index $ 2^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^4:\GL(3,2)$
Order: \(2688\)\(\medspace = 2^{7} \cdot 3 \cdot 7 \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
Generators: $\langle(1,13)(2,3)(4,14)(5,6)(7,11)(8,9)(10,16)(12,15)(17,20)(18,19), (1,6)(2,16) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $1$

The subgroup is the commutator subgroup (hence characteristic and normal), nonabelian, and nonsolvable.

Ambient group ($G$) information

Description: $C_2^5:(C_2\times \GL(3,2))$
Order: \(10752\)\(\medspace = 2^{9} \cdot 3 \cdot 7 \)
Exponent: \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian and nonsolvable.

Quotient group ($Q$) structure

Description: $C_2^2$
Order: \(4\)\(\medspace = 2^{2} \)
Exponent: \(2\)
Automorphism Group: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Outer Automorphisms: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^6.\PSL(2,7)$
$\operatorname{Aut}(H)$ $C_2^4:\GL(3,2)$, of order \(2688\)\(\medspace = 2^{7} \cdot 3 \cdot 7 \)
$W$$C_2^4:\GL(3,2)$, of order \(2688\)\(\medspace = 2^{7} \cdot 3 \cdot 7 \)

Related subgroups

Centralizer:$C_2^2$
Normalizer:$C_2^5:(C_2\times \GL(3,2))$
Minimal over-subgroups:$C_2^5:\GL(3,2)$$C_2^5:\GL(3,2)$$(C_2^3\times C_4):\PSL(2,7)$
Maximal under-subgroups:$C_2^3:\GL(3,2)$$C_2^4:S_4$$C_2^4:S_4$$F_8:C_6$$C_2\times \GL(3,2)$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$2$
Projective image$C_2^5:\GL(3,2)$