Properties

Label 10749542400000000.da.80._.A
Order $ 2^{18} \cdot 3^{8} \cdot 5^{7} $
Index $ 2^{4} \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:not computed
Order: \(134369280000000\)\(\medspace = 2^{18} \cdot 3^{8} \cdot 5^{7} \)
Index: \(80\)\(\medspace = 2^{4} \cdot 5 \)
Exponent: not computed
Generators: $\langle(1,23,3,22,5,24,2,21)(4,25)(6,10)(8,9)(11,34)(12,35,13,33)(14,32)(15,31) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: not computed

The subgroup is nonabelian and nonsolvable. Whether it is elementary, hyperelementary, monomial, simple, quasisimple, perfect, almost simple, or rational has not been computed.

Ambient group ($G$) information

Description: $A_5^8.C_2\wr C_4$
Order: \(10749542400000000\)\(\medspace = 2^{22} \cdot 3^{8} \cdot 5^{8} \)
Exponent: \(240\)\(\medspace = 2^{4} \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian and nonsolvable. Whether it is rational has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$Group of order \(85996339200000000\)\(\medspace = 2^{25} \cdot 3^{8} \cdot 5^{8} \)
$\operatorname{Aut}(H)$ not computed
$\card{W}$ not computed

Related subgroups

Centralizer: not computed
Normalizer: not computed
Normal closure: not computed
Core: not computed
Autjugate subgroups: Subgroups are not computed up to automorphism.

Other information

Number of subgroups in this conjugacy class$40$
Möbius function not computed
Projective image not computed