Properties

Label 10749542400000000.cu.4._.S
Order $ 2^{20} \cdot 3^{8} \cdot 5^{8} $
Index $ 2^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$A_5^8.D_8$
Order: \(2687385600000000\)\(\medspace = 2^{20} \cdot 3^{8} \cdot 5^{8} \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(240\)\(\medspace = 2^{4} \cdot 3 \cdot 5 \)
Generators: $\langle(13,14,15)(18,19,20)(23,25,24)(36,39,40), (2,4,3)(8,9,10)(12,15,14)(17,19,20) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian and nonsolvable. Whether it is rational has not been computed.

Ambient group ($G$) information

Description: $A_5^8.D_4:D_4$
Order: \(10749542400000000\)\(\medspace = 2^{22} \cdot 3^{8} \cdot 5^{8} \)
Exponent: \(240\)\(\medspace = 2^{4} \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian and nonsolvable. Whether it is rational has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$Group of order \(171992678400000000\)\(\medspace = 2^{26} \cdot 3^{8} \cdot 5^{8} \)
$\operatorname{Aut}(H)$ Group of order \(85996339200000000\)\(\medspace = 2^{25} \cdot 3^{8} \cdot 5^{8} \)
$\card{W}$ not computed

Related subgroups

Centralizer: not computed
Normalizer: not computed
Normal closure: not computed
Core: not computed
Autjugate subgroups: Subgroups are not computed up to automorphism.

Other information

Number of subgroups in this conjugacy class$2$
Möbius function not computed
Projective image not computed