Subgroup ($H$) information
Description: | $D_{107}$ |
Order: | \(214\)\(\medspace = 2 \cdot 107 \) |
Index: | \(5\) |
Exponent: | \(214\)\(\medspace = 2 \cdot 107 \) |
Generators: |
$a, b^{5}$
|
Derived length: | $2$ |
The subgroup is characteristic (hence normal), maximal, a direct factor, nonabelian, a Hall subgroup, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.
Ambient group ($G$) information
Description: | $C_5\times D_{107}$ |
Order: | \(1070\)\(\medspace = 2 \cdot 5 \cdot 107 \) |
Exponent: | \(1070\)\(\medspace = 2 \cdot 5 \cdot 107 \) |
Derived length: | $2$ |
The ambient group is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.
Quotient group ($Q$) structure
Description: | $C_5$ |
Order: | \(5\) |
Exponent: | \(5\) |
Automorphism Group: | $C_4$, of order \(4\)\(\medspace = 2^{2} \) |
Outer Automorphisms: | $C_4$, of order \(4\)\(\medspace = 2^{2} \) |
Derived length: | $1$ |
The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, and simple.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_{107}:(C_2\times C_{212})$ |
$\operatorname{Aut}(H)$ | $F_{107}$, of order \(11342\)\(\medspace = 2 \cdot 53 \cdot 107 \) |
$\operatorname{res}(\operatorname{Aut}(G))$ | $C_{107} \rtimes C_{106}$, of order \(11342\)\(\medspace = 2 \cdot 53 \cdot 107 \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(4\)\(\medspace = 2^{2} \) |
$W$ | $D_{107}$, of order \(214\)\(\medspace = 2 \cdot 107 \) |
Related subgroups
Centralizer: | $C_5$ | |
Normalizer: | $C_5\times D_{107}$ | |
Complements: | $C_5$ | |
Minimal over-subgroups: | $C_5\times D_{107}$ | |
Maximal under-subgroups: | $C_{107}$ | $C_2$ |
Other information
Möbius function | $-1$ |
Projective image | $C_5\times D_{107}$ |