Properties

Label 10647.b.507.a1
Order $ 3 \cdot 7 $
Index $ 3 \cdot 13^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{21}$
Order: \(21\)\(\medspace = 3 \cdot 7 \)
Index: \(507\)\(\medspace = 3 \cdot 13^{2} \)
Exponent: \(21\)\(\medspace = 3 \cdot 7 \)
Generators: $c^{13}, a^{3}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is the center (hence characteristic, normal, abelian, central, nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a direct factor, and cyclic (hence elementary ($p = 3,7$), hyperelementary, metacyclic, and a Z-group).

Ambient group ($G$) information

Description: $C_3\times C_{13}^2:C_{21}$
Order: \(10647\)\(\medspace = 3^{2} \cdot 7 \cdot 13^{2} \)
Exponent: \(273\)\(\medspace = 3 \cdot 7 \cdot 13 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Quotient group ($Q$) structure

Description: $C_{13}^2:C_3$
Order: \(507\)\(\medspace = 3 \cdot 13^{2} \)
Exponent: \(39\)\(\medspace = 3 \cdot 13 \)
Automorphism Group: $C_{13}^2.\GL(2,13)$, of order \(4429152\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 7 \cdot 13^{3} \)
Outer Automorphisms: $\SL(2,13):C_4$, of order \(8736\)\(\medspace = 2^{5} \cdot 3 \cdot 7 \cdot 13 \)
Nilpotency class: $-1$
Derived length: $2$

The quotient is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_6\times S_3\times C_{13}^2.C_{12}.\PSL(2,13).C_2$
$\operatorname{Aut}(H)$ $C_2\times C_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_3\times C_{13}^2:C_{21}$
Normalizer:$C_3\times C_{13}^2:C_{21}$
Complements:$C_{13}^2:C_3$
Minimal over-subgroups:$C_{273}$$C_3\times C_{21}$
Maximal under-subgroups:$C_7$$C_3$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$-2197$
Projective image$C_{13}^2:C_3$