Subgroup ($H$) information
Description: | $C_2\times C_{106}$ |
Order: | \(212\)\(\medspace = 2^{2} \cdot 53 \) |
Index: | \(5\) |
Exponent: | \(106\)\(\medspace = 2 \cdot 53 \) |
Generators: |
$a, b^{265}, b^{10}$
|
Nilpotency class: | $1$ |
Derived length: | $1$ |
The subgroup is characteristic (hence normal), maximal, a direct factor, central (hence abelian, nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a Hall subgroup, elementary for $p = 2$ (hence hyperelementary), and metacyclic.
Ambient group ($G$) information
Description: | $C_2\times C_{530}$ |
Order: | \(1060\)\(\medspace = 2^{2} \cdot 5 \cdot 53 \) |
Exponent: | \(530\)\(\medspace = 2 \cdot 5 \cdot 53 \) |
Nilpotency class: | $1$ |
Derived length: | $1$ |
The ambient group is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 2$ (hence hyperelementary), and metacyclic.
Quotient group ($Q$) structure
Description: | $C_5$ |
Order: | \(5\) |
Exponent: | \(5\) |
Automorphism Group: | $C_4$, of order \(4\)\(\medspace = 2^{2} \) |
Outer Automorphisms: | $C_4$, of order \(4\)\(\medspace = 2^{2} \) |
Nilpotency class: | $1$ |
Derived length: | $1$ |
The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, and simple.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_4\times S_3\times C_{52}$, of order \(1248\)\(\medspace = 2^{5} \cdot 3 \cdot 13 \) |
$\operatorname{Aut}(H)$ | $S_3\times C_{52}$, of order \(312\)\(\medspace = 2^{3} \cdot 3 \cdot 13 \) |
$\operatorname{res}(\operatorname{Aut}(G))$ | $S_3\times C_{52}$, of order \(312\)\(\medspace = 2^{3} \cdot 3 \cdot 13 \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(4\)\(\medspace = 2^{2} \) |
$W$ | $C_1$, of order $1$ |
Related subgroups
Centralizer: | $C_2\times C_{530}$ | |||
Normalizer: | $C_2\times C_{530}$ | |||
Complements: | $C_5$ | |||
Minimal over-subgroups: | $C_2\times C_{530}$ | |||
Maximal under-subgroups: | $C_{106}$ | $C_{106}$ | $C_{106}$ | $C_2^2$ |
Other information
Möbius function | $-1$ |
Projective image | $C_5$ |