Properties

Label 105600.a.5280.A
Order $ 2^{2} \cdot 5 $
Index $ 2^{5} \cdot 3 \cdot 5 \cdot 11 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{20}$
Order: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Index: \(5280\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \cdot 11 \)
Exponent: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Generators: $\left(\begin{array}{rrrr} 10 & 10 & 4 & 5 \\ 7 & 4 & 0 & 4 \\ 3 & 8 & 7 & 1 \\ 3 & 3 & 4 & 1 \end{array}\right), \left(\begin{array}{rrrr} 9 & 0 & 0 & 0 \\ 0 & 9 & 0 & 0 \\ 0 & 0 & 9 & 0 \\ 0 & 0 & 0 & 9 \end{array}\right), \left(\begin{array}{rrrr} 10 & 0 & 0 & 0 \\ 0 & 10 & 0 & 0 \\ 0 & 0 & 10 & 0 \\ 0 & 0 & 0 & 10 \end{array}\right)$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal) and cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,5$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Ambient group ($G$) information

Description: $\GL(2,11):D_4$
Order: \(105600\)\(\medspace = 2^{7} \cdot 3 \cdot 5^{2} \cdot 11 \)
Exponent: \(1320\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian and nonsolvable.

Quotient group ($Q$) structure

Order: \(5280\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \cdot 11 \)
Exponent: not computed
Automorphism Group: not computed
Outer Automorphisms: not computed
Nilpotency class: not computed
Derived length: not computed

Properties have not been computed

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^2.C_2^5.\PSL(2,11).C_2$
$\operatorname{Aut}(H)$ $C_2\times C_4$, of order \(8\)\(\medspace = 2^{3} \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$\GL(2,11):C_4$
Normalizer:$\GL(2,11):D_4$
Minimal over-subgroups:$C_{220}$$C_5\times C_{20}$$C_{60}$$C_5\times D_4$$C_5\times Q_8$$C_{40}$$C_2\times C_{20}$$C_2\times C_{20}$$C_5\times D_4$$C_5\times D_4$$C_5\times Q_8$$C_5\times Q_8$$C_{40}$$C_{40}$
Maximal under-subgroups:$C_{10}$$C_4$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image not computed