Properties

Label 105600.a.4.A
Order $ 2^{5} \cdot 3 \cdot 5^{2} \cdot 11 $
Index $ 2^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$(C_2\times \SL(2,11)):C_{10}$
Order: \(26400\)\(\medspace = 2^{5} \cdot 3 \cdot 5^{2} \cdot 11 \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(660\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 11 \)
Generators: $\left(\begin{array}{rrrr} 5 & 9 & 8 & 0 \\ 7 & 4 & 4 & 8 \\ 2 & 8 & 6 & 2 \\ 4 & 2 & 4 & 5 \end{array}\right), \left(\begin{array}{rrrr} 2 & 2 & 4 & 0 \\ 4 & 9 & 0 & 7 \\ 1 & 0 & 9 & 2 \\ 0 & 10 & 4 & 2 \end{array}\right), \left(\begin{array}{rrrr} 10 & 10 & 4 & 5 \\ 7 & 4 & 0 & 4 \\ 3 & 8 & 7 & 1 \\ 3 & 3 & 4 & 1 \end{array}\right), \left(\begin{array}{rrrr} 6 & 4 & 10 & 10 \\ 6 & 2 & 5 & 10 \\ 9 & 1 & 9 & 7 \\ 5 & 9 & 5 & 5 \end{array}\right), \left(\begin{array}{rrrr} 9 & 0 & 0 & 0 \\ 0 & 9 & 0 & 0 \\ 0 & 0 & 9 & 0 \\ 0 & 0 & 0 & 9 \end{array}\right), \left(\begin{array}{rrrr} 10 & 0 & 0 & 0 \\ 0 & 10 & 0 & 0 \\ 0 & 0 & 10 & 0 \\ 0 & 0 & 0 & 10 \end{array}\right)$ Copy content Toggle raw display
Derived length: $1$

The subgroup is characteristic (hence normal), nonabelian, and nonsolvable.

Ambient group ($G$) information

Description: $\GL(2,11):D_4$
Order: \(105600\)\(\medspace = 2^{7} \cdot 3 \cdot 5^{2} \cdot 11 \)
Exponent: \(1320\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian and nonsolvable.

Quotient group ($Q$) structure

Description: $C_2^2$
Order: \(4\)\(\medspace = 2^{2} \)
Exponent: \(2\)
Automorphism Group: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Outer Automorphisms: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^2.C_2^5.\PSL(2,11).C_2$
$\operatorname{Aut}(H)$ $(C_4\times D_4).\PSL(2,11).C_2$
$\card{W}$\(10560\)\(\medspace = 2^{6} \cdot 3 \cdot 5 \cdot 11 \)

Related subgroups

Centralizer:$C_{10}$
Normalizer:$\GL(2,11):D_4$
Minimal over-subgroups:$\GL(2,11):C_2^2$$C_5\times \SL(2,11).D_4$$C_5\times D_4.\PGL(2,11)$
Maximal under-subgroups:$\SL(2,11):C_{10}$$C_{10}\times \SL(2,11)$$D_4.\PSL(2,11)$$C_5\times D_4.A_5$$C_{220}:C_{10}$$C_{60}.C_2^3$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image not computed